雖然半導體行業(yè)一直在使用3D打印技術,我們可能會有一個疑問,為什么我們沒有聽說,一個因素是競爭。如果全球只有四個龐大的大型公司,它們構成了光刻或制造機器的主要部分,那么這些公司并沒有告訴外界關于他們應用3D打印技術的內幕,因為他們想確保的競爭優(yōu)勢。至少,對外界揭示其優(yōu)化設備性能的技術,這種主觀動機并不強。增材制造改善半導體工藝是多方面的,從輕量化,到隨形冷卻,再到結構一體化實現(xiàn),根據(jù)3D科學谷的市場觀察,增材制造使得半導體設備中的零件性能邁向了一個新的進化時代!在許多情況下,3D打印-增材制造可能使這些系統(tǒng)能夠更接近理論上預期的工作環(huán)境,而不是在機器操作上做出妥協(xié)。3D打印帶來的直接好處包括更高的精度、更高的生產(chǎn)能力、更快的周期時間,甚至使得每臺機器每周生產(chǎn)更多的晶圓。某些情況下,還將看到整個晶片的成像質量更高。這將意味著更少的浪費和更高質量的產(chǎn)品增材制造技術可用于快速原型制造和生產(chǎn)。山東Nanoscribe增材制造微納光刻
因Nanoscribe公司的加入使得CELLINK 集團成為世界上頭一家擁有雙光子聚合 (2PP) 增材制造能力的生物科技公司。 Nanoscribe公司 的 2PP 技術能夠在亞細胞尺度上對血管微環(huán)境進行生物打印,適用于細胞研究和芯片實驗室應用。該技術未來也將助力集團的相關產(chǎn)品線開發(fā),用于制造植入體、微針、微孔膜和組學應用耗材等。 CELLINK集團的前列宏觀結構生物打印技術與 Nanoscribe 公司的微觀結構生物打印技術相結合做到了強強聯(lián)手的協(xié)作效應,可以實現(xiàn)更逼真的組織結構,例如血管化和細胞支持體等。 2PP 技術將實現(xiàn)CELLINK集團所有三個業(yè)務的跨領域應用,并增強集團的耗材產(chǎn)品開發(fā)和供應。 “借助 Nanoscribe 先進的 2PP 技術,我們可以實現(xiàn)擴大補充我們的產(chǎn)品組合,為我們的客戶提供更廣的產(chǎn)品?!鄙虾NC械增材制造工藝增材制造技術具有高的堅固性,穩(wěn)定性,耐用性。
雖然半導體行業(yè)一直在使用3D打印技術,我們可能會有一個疑問,為什么我們沒有聽說,一個因素是競爭。如果全球只有四個龐大的大型公司,它們構成了光刻或制造機器的主要部分,那么這些公司并沒有告訴外界關于他們應用3D打印技術的內幕,因為他們想確保的競爭優(yōu)勢。至少,對外界揭示其優(yōu)化設備性能的技術,這種主觀動機并不強。增材制造改善半導體工藝是多方面的,從輕量化,到隨形冷卻,再到結構一體化實現(xiàn),根據(jù)3D科學谷的市場觀察,增材制造使得半導體設備中的零件性能邁向了一個新的進化時代!在許多情況下,3D打印-增材制造可能使這些系統(tǒng)能夠更接近理論上預期的工作環(huán)境,而不是在機器操作上做出妥協(xié)。
隨著各行各業(yè)的發(fā)展及科技的進步,人們可以用3D打印創(chuàng)建在人體內傳導藥物的載體,可以用3D打印來建造房子。人們還可以用3D打印創(chuàng)作出精美的珠寶首飾和設計,甚至可以用這項技術做出巨大的藝術雕塑。Nanoscribe 公司專注于微觀3D打印技術,通過該用戶可以得到尺寸微小的高質量產(chǎn)品。全新推出的Quantum X平臺新型超高速無掩模光刻技術主要是基于Nanoscribe雙光子灰度光刻技術(2GL®)。該技術將灰度光刻的性能與雙光子聚合的精確性和靈活性完美結合,使其同時具備高速打印,完全設計自由度和超高精度的特點。從而滿足了**復雜增材制造對于優(yōu)異形狀精度和光滑表面的極高要求。增材制造輪能夠針對不同的應用場景進行優(yōu)化設計。
增材制造技術能夠簡化光學器件的制造流程,縮短交貨期并降低材料消耗。更重要的是,增材制造技術能夠實現(xiàn)功能集成的優(yōu)化設計方案,尤其在衛(wèi)星光學系統(tǒng)制造領域,增材制造技術能夠滿足用戶對輕型光學系統(tǒng)不斷增長的需求,并實現(xiàn)下一代高附加值光學器件的制造。通過增材制造技術開發(fā)的下一代光學儀器中,將越來越多采用緊湊的功能集成設計,如集成隔熱,冷卻通道,局限的機械和熱接口,以及將光學功能作為設備自身結構的一部分。緊湊集成化設計減少了組件裝配過程中出現(xiàn)問題的風險,同時開辟了制造冷卻光學系統(tǒng),有源光學系統(tǒng)或自由曲面的新方式。陶瓷增材制造技術的凈成形能力,還能夠提高準確性,改善集成/結合過程的質量。在成就高附加值零件方面,3D打印的應用還包括很多,除了打印極度復雜的結構、打印混合材料,3D打印因為技術種類繁多也帶來了高附加值零件的創(chuàng)新空間,例如3D打印感應器、3D打印多層電路、3D打印電池等等3D打印技術正在改變制造業(yè)。高精度增材制造QX
3D打印技術可用于制造復雜的工具和模具。山東Nanoscribe增材制造微納光刻
為了制作由3D工程細胞微環(huán)境制成的體外細胞培養(yǎng)物,科學家們利用雙光子聚合技術(2PP)來制造模擬腦血管幾何形狀的仿生3D支架,該仿生幾何結構影響膠質母細胞瘤細胞及其定植機制。在該實驗中,細胞可以在定制3D支架幾何結構的引導下以受控方式生長。只有在強聚焦的激光焦點處才能發(fā)生雙光子吸收的光聚合反應可實現(xiàn)在亞微米范圍內打印極其精細的3D特征結構。此外,這種增材制造技術可在微米級別實現(xiàn)高度三維設計自由度,并以比較高精度模擬三維細胞微環(huán)境。山東Nanoscribe增材制造微納光刻